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Summary 

The depletion of dissolved oxygen in bottom waters and the expansion of harmful algae blooms 

(HAB`s) are most common responses of aquatic ecosystems to eutrophication, and thus also to the 

semi-enclosed, brackish Baltic Sea with high riverine nutrient loads. In the first part of this thesis the 

historical progression of eutrophication in the Baltic Sea, and the reasons for its sensitivity towards 

eutrophication are summarized. The northern watersheds, which are sparsely populated and mainly 

covered by boreal forests, were compared to the southern watersheds, which are surrounded by 

highly industrialized and densely populated areas that are mainly in agricultural use. The evaluation 

of long term data sets and model results indicates that in addition to changes in nutrient inputs, 

increased temperature and precipitation are likely to become important forcings for the Baltic Sea. 

Moreover, it has been suggested that lagoons and near shore areas remove large quantities of 

riverine nitrogen, but will only be able to do so as long as they remain oxic meaning that this system 

service is  threatened  due to increasing coastal hypoxia. In the second study the nitrogen removal 

processes in the adjacent coastal areas of the Oder and Nemunas rivers were characterized during 

peak outflow, by means of dual stable isotopes measurements in nitrate (δ15N-NO3
- and δ18O-NO3

-) 

and nitrate uptake rates, since nitrate is highly bioavailable and the dominant nitrogen component 

delivered by these rivers. Results show that the isotopic signal of nitrate is dominated on the one 

hand by mixing and assimilation in the surface waters and on the other hand by denitrification in the 

near bottom waters. Calculated fractionation factors (15ε and 18ε) of around 10‰ in the near bottom 

waters infer that the isotopic enrichment from sedimentary denitrification may be higher in 

permeable, sandy than in muddy sediments. So far, permeable sediments with low organic content 

were mainly considered to contribute little to the biogeochemical cycling. However, the isotope data 

of nitrate from this study indicate that denitrification in these sediments may be an important 

process. Because permeable sediments account for up to 70% of the continental shelf area their 

contribution to the Baltic Sea loss budget as well as to the global nitrogen loss budget should be 

reevaluated. 

Large quantities of nitrogen are also delivered to the Baltic Sea in form of dissolved organic nitrogen 

(DON) via rivers and nitrogen fixation. However, the role of DON in the nitrogen cycle is still poorly 

understood and its impact on eutrophication has not been further considered in nitrogen load 

reductions. Therefore, in the third study the major aim was to evaluate the role of DON as a potential 

nutrient source for surface plankton in summer when dissolved inorganic nitrogen (DIN) 

concentrations are low. Two different 15N labeled bulk DON substrates were produced and DON 

uptake rates were determined along a salinity gradient from the North Sea to the Baltic Sea. Uptake 

rates in the Baltic Sea (184 to 1213 nmol N l-1 h-1) were an order of magnitude higher compared to 

rates in the North Sea or the Chesapeake Bay (USA). The findings from this study indicate that DON is 
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an important component of plankton nutrition and can fuel primary production and therefore also 

contribute to eutrophication. Additionally, the conservative versus non-conservative behavior of 

dissolved organic matter (DOM) including DON and DOC (dissolved organic carbon) was tested along 

the same salinity gradient and the share of terrestrial DOM to the total DOM pool was determined by 

means of δ13C values in the fourth study. Results indicate that up to 83% of the DOM is derived from 

terrestrial sources in the Baltic Sea and that substantial amounts of DOM (>50%) delivered by rivers 

are degraded near the coastline. Since eutrophication is a global problem, results from this thesis can 

be translated to other coastal zones of temperate climate with similar nitrogen loads. Overall, it 

seems necessary to reevaluate the role of sediments for the nitrogen turnover and its nitrogen 

removal capacity and to consider dissolved organic substances as potential nutrient sources. 
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Zusammenfassung 

Die Verarmung an gelösten Sauerstoff im bodennahen Wasser und die Ausbreitung von toxischen 

Algenblüten sind die am häufigsten auftretenden Folgen von Eutrophierung in aquatischen 

Ökosystemen, so auch in der Ostsee, einem der größten Brackwassergebiete der Welt mit hohen 

Nährstofffrachten aus Flusseinträgen. Der erste Teil dieser Doktorarbeit umfasst eine Literaturstudie 

in der die geschichtliche Entwicklung der Eutrophierung und die Gründe warum die Ostsee besonders 

sensibel auf die vom Menschen verursachte Belastungen reagiert, zusammengefasst sind. Hierbei 

wurden die nördlichen Einzugsgebiete der Ostsee, die nur dünn besiedelt und hauptsächlich von 

Wäldern bedeckt sind, mit den südlichen Einzugsgebieten, die stark besiedelt und von Industrie und 

Landwirtschaft geprägt sind, verglichen. Die Auswertung von Langzeitdatenmessungen und von 

Modelierungsstudien ergab, dass wahrscheinlich neben sich ändernden Nährstoffeinträgen auch 

steigende Temperaturen und  Niederschläge in Zukunft eine größere Rolle in der Ostsee spielen 

werden. Außerdem wurde vermutet, dass Haffe, die normalerweise große Mengen an über Flüsse 

eingetragene Stickstofffrachten entfernen, dies nur so lange bewerkstelligen können wie die 

Küstengebiete oxisch bleiben. Durch die zunehmende Sauerstoffverarmung in Folge der 

Eutrophierung in Küstengebieten ist diese Funktion aber gefährdet. Im zweiten Teil dieser Arbeit 

wurden Prozesse die Stickstoff aus dem angrenzenden Küstengebieten der Flüsse Oder und Nemunas 

während der Hauptabflusszeit im Frühjahr entfernen, charakterisiert. Da Nitrat zu dieser Jahreszeit 

die Hauptstickstoffkomponente ist, erfolgte dieses mit Hilfe von Messungen an stabilen Isotopen im 

Nitrat (δ15N-NO3
- and δ18O-NO3

-) und Nitrat Aufnahmeraten. Ergebnisse zeigen, dass das 

Isotopensignal von Nitrat auf der einen Seite im Oberflächenwasser durch Mischung und Nitrat 

Aufnahme dominiert ist und auf der anderen Seite im Bodennahem Wasser durch Denitrifizierung. 

Berechnete Fraktionierungsfaktoren (15ε and 18ε) von 10‰ im bodennahmen Wasser lassen darauf 

schließen, dass die Anreicherung in den Isotopen durch Denitrifizierung in permeablen Sedimenten 

höher ist als in feinen Sedimenten. Bisher fanden permeable Sedimente mit niedrigem organischem 

Gehalt in biogeochemischen Kreisläufen wenig Beachtung, aber die Daten von den 

Isotopenmessungen lassen darauf schließen, dass auch diese Sedimente durch Denitrifizierung einen 

wichtigen Anteil zur Stickstoffentfernung beitragen. Da permeable Sedimente bis zu 70% der 

Kontinentalen Schelfmeere ausmachen, müsste ihr Beitrag sowohl in Stickstoff Budgets der Ostsee 

wie in globalen überdacht werden. 

Stickstoff wird nicht nur in Form von gelöstem anorganischem Stickstoff (DIN) über Flüsse und 

Stickstoff Fixierung in die Ostsee eingetragen sondern auch in Form von gelöstem organischem 

Stickstoff (DON). Die Rolle von DON im Stickstoffkreislauf ist immer noch wenig verstanden und in 

Bezug auf Eutrophierung fand es bisher wenig Beachtung. Deshalb wurde in der dritten Studie dieser 

Doktorarbeit die Rolle des DON im Sommer, wenn alle anorganischen Stickstoffquellen verbraucht 
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sind, als potentielle Nährstoffquelle für das Plankton im Oberflächenwasser untersucht. Zwei 

unterschiedliche 15N markierte DON Substrate wurden produziert und Aufnahmeraten von diesen 

beiden Tracern entlang eines Salinitätsgradienten in der Nord- und Ostsee bestimmt. Die 

Aufnahmeraten (184 to 1213 nmol N l-1 h-1) in der Ostsee waren doppelt so hoch wie die in der 

Nordsee oder auch im Vergleich zur Chesapeake Bay (USA). Die Ergebnisse dieser Studie lassen 

darauf schließen, dass DON eine wichtige Komponente in der Nährstoffversorgung von Plankton 

spielt und daher auch die Primärproduktion antreiben und somit auch zur Eutrophierung beitragen 

kann. In einer vierten Studie wurde das konservative gegen das nicht-konservative Verhalten von 

gelöstem organischem Material (DOM), welches DON und DOC (gelösten organischen Kohlenstoff) 

einschließt, entlang desselben Salzgehaltsgradienten getestet. Zusätzlich wurde der terrestrische 

Anteil vom DOM am Gesamt DOM mit Hilfe von δ13C Werten über Mischungsmodelle berechnet. Hier 

sprechen die Ergebnisse dafür das bis zu 83% des DOM in der Ostsee aus terrestrischen Quellen 

stammen und das der größte Anteil (>50%) vom DOM, das aus Flüssen stammt, in den Ästuaren und 

angrenzenden Küstengebieten abgebaut wird. Eutrophierung ist nicht nur ein Problem in der Ostsee, 

sondern weltweit und daher lassen sich einige Ergebnisse dieser Doktorarbeit auch auf andere 

Küstengebiete in den gemäßigten Breiten mit hohen Stickstofffrachten übertragen. Insgesamt ist es 

nötig die Rolle von Sedimenten in Bezug auf die Stickstoffentfernung zu überdenken und gelöste 

organische Substanzen als potentielle Nährstoffquellen zu berücksichtigen.  
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1. Introduction 

1.1 Ecological problems of coastal eutrophication 

At present, more than 40% of the world`s ocean are strongly influenced by human activities (Halpern 

et al. 2008). Human population growth and its associated activities like fossil-fuel combustion, 

production of nitrogen fertilizers (Haber Bosch process) and cultivation of nitrogen-fixing legumes 

have increased the flux of nitrogen and phosphorus to aquatic and terrestrial ecosystems alterating 

global cycles of both nutrients (Gruber and Galloway 2008, Galloway et al. 2003, 2004, Howarth 

2006, 2008, Vitousek et al. 1997, Pickney et al. 2001). As a result of increasing nitrogen and 

phosphorus inputs the accumulation of organic matter by primary production has increased, which is 

defined as eutrophication (Nixon 1995). Selman et al. (2008) identified more than 400 areas 

worldwide which experienced symptoms of eutrophication (Fig. 1.1). Especially in coastal waters 

eutrophication has become the biggest pollution problem (e.g Vitouseket al. 1997, Syvitski et al. 

2005, Rabalais 2002, Howarth et al. 2000), since rivers deliver large amounts of excess nutrients 

(Boyer et al. 2006, Dumont et al. 2005). It has been shown that nutrient river runoffs directly reflect 

human population density and activity in the watersheds (Peierls et al. 1991). 

 

Figure 1.1: Map of 415 eutrophic and hypoxic coastal systems worldwide. The map was compiled by R. Diaz, M. Selman and 

Z. Sugg (http://www.wri.org/map/world-hypoxic-and-eutrophic-coastal-areas). 

 

Besides increasing primary production, effects of eutrophication are enhancement of anoxia and 

hypoxia in deep and coastal waters, harmful algae blooms (HABs), decreasing water clarity and 

increased fluxes of N2O to the atmosphere (Nixon 1995, Conley et al. 2009a, 2011, Galloway et al. 

2003, Diaz and Rosenberg 2008). Even though hypoxia occurs naturally in many marine environments 
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(like fjords and deep basins (Gustafsson and  Nordberg 2000, Zillen et al. 2008)), the so called dead 

zones have spread exponentially since the 1960s, approximately doubling the number each decade 

and affecting today more than 240.000 km² of the marine environment (Diaz and Rosenberg 2008). 

Also HAB`s occur as a natural phenomenon, but over the last decades their extent has increased due 

to nutrient increases and/or shift in nutrient ratios (Anderson et al. 2002, Glibert et al. 2005, Heisler 

et al. 2008). These negative effects of eutrophication in turn can lead to loss or degradation of 

habitats with consequences to marine biodiversity and changes in ecosystem structure and function, 

such as cycling of elements and processing of pollutants (Vitousek et al. 1997, Rabalias 2002). Much 

of this eutrophication is driven by nitrogen (Howarth 2008). Due to the growing global demand in 

reactive nitrogen the pressure on coastal ecosystem may even rise in the future (ENA-book). To 

improve management and focus on strategies to resolve eutrophication a better understanding of 

coastal system dynamics is highly needed. This thesis will contribute in numerous ways, since it 

focuses on two major problems of eutrophoication: dissolved organic matter (DOM) and N-retention 

and turnover in coastal waters.  

 

1.2 Global nitrogen cycle 

The largest pool of nitrogen is found in the atmosphere as dinitrogen gas (N2) that naturally only 

becomes biologically available through the process of N2 fixation, the conversion of N2 into organic 

nitrogen. The ability to fix N2 is widespread in the marine environment, with cyanobacteria fixing 140 

Tg N yr-1 on a global scale (Brandes 2007, Gruber and Galloway 2008, Fig. 1.2). In terrestrial systems, 

N2 fixation accounts for 100 Tg N yr-1 (Fig. 1.2).With the onset of industrialization it became evident 

that the amount of reactive nitrogen (fixed nitrogen, Nr: including nitrate (NO3
-), nitrite (NO2

-), 

ammonium (NH4
+), and dissolved organic nitrogen (DON)) needed to be increased to sustain the 

growing population. With the invention of the Haber Bosch process, where nonreactive N2 is 

converted to reactive NH3 (ammonia) it was possible to meet the growing food demand. It has been 

estimated that nitrogen fertilizers are responsible for feeding nearly 50% of the world’s population 

(Erisman et al. 2008). However, the nitrogen use efficiency for typical cultivated plants like rice, 

wheat and maize is typically below 40%, meaning that most of the N applied fertilizers is lost to the 

atmosphere via denitrification or to the aquatic environment via leaching. In the latter it is 

assimilated into biomass, and therefore fueling eutrophication (Canfield et al. 2010, Erisman et al. 

2008). This movement of nitrogen from one effect to another as it cycles through environmental 

reservoirs is referred as the nitrogen cascade (Galloway et al. 2003). Besides the close links in the 

nitrogen cycle between watersheds, airsheds and the marine system the nitrogen cycle is closely 

linked to the carbon and phosphorus cycles (Fig. 1.2), which becomes obvious by the Redfield ratio, 

the molar stoichiometric relationship between C, N and P (106:16:1) in marine organic matter. Of 



Introduction 

3 
 

particulate relevance is the carbon cycle, since atmospheric CO2 has a central role in controlling 

climate (Sarmiento and Gruber 2002). The full scale of impacts of additional reactive nitrogen input 

globally still remains unknown but it is obvious that further intensification in agriculture, increasing 

energy use and population growth will continue to alter the terrestrial and marine nitrogen cycle and 

will amplify eutrophication in the future. Together fossil-fuel combustion, production of nitrogen 

fertilizers and increased cultivation of nitrogen-fixing legumes have doubled the inputs of reactive 

nitrogen compared to preindustrial times, now exceeding natural nitrogen sources, accounting to 

160 Tg N yr-1, (Galloway et al. 2003, Gruber and Galloway 2008, Fig. 1.2). Therefore understanding 

how human induced ecological change interacts with and affects the structure and functioning of 

large estuarine ecosystems adjoining coastal waters remains important (Paerl et al. 2006).  

 

Figure 1.2:  Natural and anthropogenic N fluxes on land and in the ocean. The tight coupling between the nitrogen cycles on 

land and in the ocean with those of carbon and phosphors are shown. Blue fluxes denote natural (unperturbed) fluxes and 

red fluxes denote anthropogenic perturbation. Redrawn from Gruber and Galloway (2008) 

 

Reactive nitrogen can be assimilated by most organisms and most of the organic nitrogen in the 

ocean is returned back to nitrate via remineralization to ammonium (ammonification), which is 

rapidly nitrified and therefore rarely occurs in significant concentrations in oxygenated habitats. The 

first step in nitrification is the oxidation of ammonium to nitrite by ammonia-oxidizing bacteria and 

archaea, the second step is the conversion of nitrite to nitrate by nitrite-oxidizing bacteria (Fig. 1.3). 

Nitrification produces the substrate for denitrification and anaerobic ammonium oxidation 

(anammox), the only two processes that remove nitrogen permanently from the system by 

producing N2. Denitrification describes the conversion of nitrate into N2 gas through a series of 

intermediates (NO2
-, NO, and N2O) (Knowles, 1982, Fig. 1.3). It takes place under suboxic and anoxic 
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conditions when organic carbon (as electron donor) and nitrate (as electron acceptor) are both 

available (Knowles 1982, Seitzinger 1988). During anammox NH4
+ is anaerobically oxidized to N2 in 

the absence of organic matter (Dalsgaard et al. 2003, Kuypers et al. 2003, Fig. 1.3) and a recent 

examination revealed that it could possibly account for 30% to 50% of water column N2 production 

(Devol 2003). Apart from the reduction to N2 through these two processes, nitrate can also be 

reduced to ammonium during DNRA (Dissimilatory nitrate reduction to ammonium). The importance 

of DNRA in the water column nitrogen cycling is still widely unknown, but in the Oman Shelf DNRA 

was found to be an important mineralization pathway for organic matter (Jensen et al. 2011). 

Current global nitrogen budgets have shown that benthic denitrification and anammox can account 

for about 70% of the fixed nitrogen loss (Codispoti 2007). But if the nitrogen budget is in balance is 

still highly controversial (Gruber and Galloway 2008, Zehr and Kudela 2011). 

 

 

 

Figure 1.3: The marine nitrogen cycle. The various chemical forms of nitrogen are plotted versus their oxidation state, 

where nitrate is the most oxidized N species, while ammonium and organic nitrogen comprise the most reduced species 

involved in the cycle. Processes shown in light grey occur in anoxic environments only (modified from Gruber 2008). 
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1.3 Dissolved organic matter as part of the nitrogen cycle 

Dissolved organic matter (DOM) is a complex pool of organic molecules that pass a filter of nominal 

pore size 0.2–1 μm (Hedges 2002). It consists of high molecular weight (HMW, weight > 1 kDa) and 

low molecular weight (LMW, weight < 1kDa) compounds. HMW DOM includes proteins, dissolved 

combined amino acids, nucleic acids (DNA, RNA), and humic substances. LMW DOM consists of urea, 

dissolved free amino acids and amino sugars (Bronk 2002, Bermann and Bronk 2003). However, most 

compounds still remain chemically uncharacterized (Bronk 2002). Recent progress in analytical 

chemistry like the fourier transform ion cyclotron mass spectrometry (FT-ICR-MS) enable a 

characterization of dissolved organic matter at the molecular level in unprecedented detail (Koch et 

al. 2008, Dittmar and Paeng 2009), but still there is a gap in knowledge due to the chemical 

complexity of the compounds. According to Benner (2002) only 4-14% of DOM have been chemically 

characterized. 

DOM in the marine environment can be from both allochthonous and autochthonous sources. 

Allochthonous sources include terrestrial runoff, leaching from plant detritus and soils into streams 

and rivers (Valiela et al. 1990, Tobias et al. 2001), sediments (Burdige 2002), groundwater (Santos et 

al. 2008) and atmospheric deposition (Duce et al. 2008, Cornell et al. 1995). Most of the 

allochthonous DOM has passed through several systems and chemical processes like 

phototransformation by sunlight, bacterial degradation in surface waters and soils as well as 

chemical changes due to increasing salinities before it reaches coastal regions. Autochthonous 

sources include release by primary producers (Bronk and Ward 1999, Stedmon et al. 2006) and 

bacteria (Ogawa 2001), excretion from micro and mesozooplankton (Steinberg et al. 2000), viral lysis 

of bacteria (Fuhrman 1999) and eukaryotic cells (Suttle 1994), and particle solubilization (Smith 1992) 

(Fig. 1.4). Main sinks of DOM are heterotrophic uptake, autotrophic uptake and abiotic 

photochemical decomposition (Bronk 2002) (Fig. 1.4). Small organic compounds like amino acids are 

taken up through permeases (membrane transport proteins), whereas larger compounds have to be 

broken down by extracellular hydrolytic enzymes (Anita et al. 1991, Bronk 2002, Mulholland and 

Lomas 2008 and references therein). For coastal areas terrestrial input via rivers dominates and 

highest concentrations of DOM are found close to the mouth of rivers (Stepanauskas et al. 2002, 

Feistel et al. 2008, Bronk 2002). In oceanic systems the major DOM sources are primary production 

and atmospheric input (Carlson 2002).  

DOM is generally characterized in terms of carbon (DOC), nitrogen (DON) and/or phosphorus (DOP). 

DOC, DON and DOP can function largely independently within many ecosystems and are therefore 

discussed individually. In this thesis I will mainly focus on the DON components but also DOC will be 

discussed in face of its distribution and terrestrial background (see chapter 4 and 5 for details). DON 

represents the largest pool of fixed nitrogen in most aquatic systems with concentrations decreasing 
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from rivers to the open ocean (Bronk 2002). In the past DON has long been ignored as a potential N 

source, because it was thought to be mainly refractory. However, recent studies have shown that 

DON can also serve as an important N source for both phytoplankton and bacteria (Veuger et al. 

2004, Seitzinger and Sander 1999, Middelburg and Nieuwenhuize 2000, Berg et al. 2001, Bronk et al. 

2007), and thus contribute significantly to marine eutrophication (Berman 1997, Seitzinger and 

Sander 1997). For example, bioassay experiments in nine US rivers indicated that up to 23% of DON is 

bioavailable and that 43% of the consumed total dissolved nitrogen (TDN) by bacteria is taken up as 

DON (Wiegner et al. 2006). In general, the bioavailability of terrestrially derived DON is variable at 2-

70% (Seitzinger and Sanders 1997, Stepanauskas et al. 2002, Veuger et al. 2004, Wiegner et al. 2006). 

It is speculated that the bioavailability and the composition of DON may depend on the source 

(McCallister et al. 2006). DON from anthropogenic sources seems to be more bioavailable than DON 

exported from forested regions and wetlands (Seitzinger et al. 2002). Especially in summer DON may 

significantly enhance primary production and its impact on the microbial community and 

contribution to eutrophication seems to be greater (Stepanauskas et al. 1999, 2002, Berg et al. 2003). 

Different compounds of DON, like urea or amino acids have been studied in detail (Bronk et al. 1998, 

Berman and Bronk 2003 and references therein), but studies on the bulk pool are rare (for details see 

chapter 4).  

Like DON, DOC was also assumed to be mainly refractory and therefore unimportant as an energy 

source for microbes. However, studies in the last decades have shown that DOC is also highly 

bioavailable. Amon et al. (2001) demonstrated that 30% of fresh, algal-derived DOM was bioavailable 

in form of DOC for bacteria. Terrigenous dissolved organic carbon was shown to be relatively rapidly 

remineralized on the continental shelf of the Arctic Ocean (Letscher et al. 2011). In the world ocean 

approximately 97% of all organic carbon exists in the dissolved phase, which is comparable to the 

amount of carbon dioxide in the atmosphere (e.g. Siegenthaler and Sarmiento 1993). Every year 

around 0.25 Gt C are transported as DOC via the rivers to the coastal oceans and a relatively high 

proportion is degraded after mixing with seawater with turnover rates ranging from days to years 

(Cauwet et al. 2002). Additionally, only a small fraction of the organic matter within the ocean 

appears to be land derived (Hedges et al 1997, see chapter 5 for more details). Even though DOC and 

DON cycling is partly intertwined, it has been shown that DON can be preferentially recycled to avoid 

nitrogen limitation (Thomas et al. 1999). But still the dynamics of specific compounds of DOM and 

much less of the bulk pool remains unclear and therefore tracing DOM with stable isotopes can help 

understanding its cycling (see chapter 4 and 5 for more details).  
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Figure 1.4: Conceptual diagram of autochthonous sources and sinks of DON in the marine environment. DPA stands for 

dissolved primary amines (Bemann and Bronk 2003, Bronk 2002). 

 

1.4 Stable isotopes as a tool to unravel the nitrogen cycle  

To assess nitrogen turnover processes and sources, nitrogen and oxygen isotopes in natural 

abundance and nitrogen isotopes in artificial labeling experiments were used in many aquatic studies 

(e. g. Dugdale and Wilkerson 1986, Liu & Kaplan 1989, Brandes et al. 1998, Sigman et al. 1999, 

Middelburg and Nieuwenhuize 2000, Voss et al. 2000, Sutka et al. 2004, Deutsch et al. 2006, Casciotti 

et al. 2007, Dähnke et al. 2008, Granger et al. 2008, see chapter 3 and 4 for details). Isotopes are 

atoms with the same number of protons but different number of neutrons. Stable isotopes are 

defined as those that are energetically stable and do not decay. Nitrogen has two stable isotopes 14N 

and 15N, while oxygen has three, 16O, 17O and 18O. In this study 17O is neglected due to its very small 

abundance in natural sources, but for the mass-dependent 16O/17O/18O relationship a correction was 

always made for 17O. Isotope ratios are expressed in the delta notation (δ15N relative to atmospheric 

N2 and δ18O relative to Vienna Standard Mean Ocean Water (VSOW)): 

 

δsample (‰) = (Rsample/Rreference) x 1000 

 

where R is 15N/14N or 18O/16O ratio of sample and reference, respectively. Stable isotopes values are 

altered by both equilibrium processes (like evaporation of water) or by kinetic fractionation 

processes which tend to partition light isotopes (14N and 16O) from heavier ones (15N and 18O) 

(Kendall 1998). As a consequence, throughout the course of a biochemical reaction, the substrate 

being consumed becomes progressively enriched with the heavier isotope, while the resultant 

product becomes relatively lighter. The extent to which a biological transformation fractionates 

between light and heavier isotopes is given by the isotopic effect, ε (Tab. 1.1). 
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This value is calculated from the integrated expression of the progress of the reaction according to 

the Rayleigh model: 

 δreactant = δinitial -ε[ln(f)]      

where f is the fraction of reactant remaining (nitrate/nitrateinitial), δinitial is the15N/14N or 18O/16O ratio 

of initial reactant pool, and ε is the kinetic isotope effect of the transformation. In practice,ε is the 

negative slope of the linear relation of δ15N or δ18O vs. the natural logarithm of the fraction of the 

reactant remaining. 

Table 1.1: Fractionation factors (ε) for N cycle processes. 

Reaction 15ε 18ε References 

Nitrate assimilation (NO3
-→ PN) ~5‰ 18ε = 15ε Wu et al. 1997, Sigman et al. 

1999,Altabet 2001, Granger et 

al. 2004 

 

Nitrification (NH4
+→ NO2

-) 14-38‰ -  Casciotti et al. 2003 

 

Water column denitrification (NO3
-→ N2) 22-30‰ 18ε = 15ε Brandes et al. 1998, Altabet et 

al. 1999, Voss et al. 2001 

 

Sediment denitrification (NO3
-→ N2) <3‰ 18ε = 15ε Brandes and Devol 1997, 

Lehmann et al. 2004 

 

N2 fixation (N2→ NH4
+) -1,5-0‰ ~0‰ Capone et al. 1997, Minagawa 

and Wada 1986 

 

Ammonification (Norg. → NH4
+) ~0‰ - Kendall 1998 

 

1.4.1 Tracking nitrogen in coastal areas 

New insights into the nitrogen cycle have been gained from studies that have used stable isotopes in 

artificial labeling experiments and natural abundances. For example studies using 15N/14N isotopic 

tracers examined the linkages in the cycle of new nitrogen input into the euphotic zone of the ocean, 

its utilization by phytoplankton, and transport to the deep sea (Altabet and Deuser 1985, Altabet and 

McCarthy 1985, 1986, Altabet 1988, 1989, Voss et al. 1996). Further on, the distribution of nitrogen 
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isotopes within marine ecosystems can provide a record of the sources of nitrogen supporting 

biological production and the major pathways and mechanisms moving nitrogen through the biota 

(Montoya 2008). 

Because about 88% of the oceanic fixed nitrogen pool consists of nitrate (Gruber 2008) many studies 

over the last decades have used 15N isotopes in nitrate to investigate sources and transformation 

processes (Brandes and Devol 2002 and references therein). Even though, measurements of δ15N and 

δ18O in nitrate in fresh water samples were possible (Silva et al. 2000) the invention of the denitrifier 

method (Sigman et al. 2001, Casciotti et al. 2002, see chapter 3 for details) enabled researchers to 

investigate the influence of both cycling and mixing of multiple sources in marine water samples with 

low nitrate concentrations (e.g. Wankel et al. 2006, Dähnke et al. 2010, Sebilo et al. 2006, Sigman et 

al. 2003). The advantage of the additional measurement of the O isotopes in nitrate is that now 

processes overprinting each other when looking at nitrogen isotopes in nitrate can be distinguished. 

For example, Sigman et al. (2003) were able to distinguish between water column and sedimentary 

denitrification in the Santa Barbara Basin by using the dual stable isotopes of nitrate. They could 

furthermore show that sedimentary denitrification accounts for more than 75% of the nitrate loss 

within that area.  

The most significant processes in rivers and coastal areas that cause isotopic fractionation are 

assimilation, nitrification, and denitrification. Assimilation as well as denitrification results in an 

increase of δ15N and δ18O values in nitrate (Kendall 1998) because plankton and microbes 

preferentially consume isotopically light nitrate (14N-NO3
- and 16O-NO3

-) (Mariotti et al. 1988, Lui & 

Kaplan 1989, Kendall 1998, Voss et al. 2001, Lehmann et al. 2003). The δ15N/δ18O ratio of the 

remaining nitrate is supposed to be close to 1:1 during assimilation (Granger et al. 2004). The same 

holds true for denitrification in marine environments (Sigman et al. 2005, Granger et al. 2004), 

whereas in freshwater ecosystems the ratio seems to be 1:0.5 (Böttcher et al. 1990, Lehmann et al. 

2003). But also anomalies from the 1:1 δ15N/δ18O relationship can be found in the marine 

environment (Sigman et al. 2005, see chapter 3 for details). During nitrification the development of 

δ15N-NO3
- and δ18O-NO3

- is decoupled. Nitrification adds isotopically depleted nitrate to the nitrogen 

pool because nitrifiers preferentially take up isotopically light ammonium (Kendall 1998). In addition 

to the N isotope effects, also O isotope effects are involved with the nitrification process (Buchwald 

and Casciotti 2010, Casciotti et al.2010). New O atoms are added from dissolved oxygen (O2) and 

water (H2O) pools, independently of other N cycle processes. While O2 is incorporated during the 

oxidation of NH3 to NH2OH, H2O is incorporated during the oxidation of NH2OH to NO2 and NO3 

(Buchwald and Casciotti 2010, Casciottiet al. 2010). It was suggested that the δ18O-NO3
- signature 

from nitrification is dominated by the water δ18O signal, because 5 out of 6 oxygen atoms in nitrate 

originate from the water (Casciotti et al. 2002, Sigman et al. 2005). But this only holds true when 
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exchange and fractionation of oxygen isotopes during nitrification are minimal (Casciotti et al. 2011). 

Casciotti et al. (2010) and Buchwald and Casciotti (2010) could show that in addition to variations in 

the oxygen isotope value of the O atom donors (O2 and H2O), the oxygen isotope value of newly 

produced nitrate is affected by O isotopic exchange and fractionation. This makes it even more 

complicated to define a fractionation factor for nitrification and additional work is needed to fully 

characterize the O isotopic systematics for nitrification (Casciotti et al. 2011). 
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Figure 1.5: Ranges of isotopic compositions of nitrate (δ15N and δ18O) for major nitrate sources and the expected trend for 

the isotopic composition undergoing denitrification (adopted from Mayer et al. 2002, Kendall et al. 2007) 

 

The isotope values (δ18O- and δ15N-NO3
-) resulting from various turnover processes can be used to 

attribute nitrate to specific sources (Fig. 1.5, Boyer et al. 2002, Mayer et al. 2002, Voss et al. 2006, 

Deutsch et al. 2006). Enriched δ15N-NO3
- values indicate sewage input and/or input of fertilizers in 

agriculture runoff ranging from 7 and 25‰ (summarized in Kendall et al. 2007). Compared to nitrate 

from natural sources anthropogenic nitrate is enriched in 15N by various processes like ammonia 

volatilization and denitrification in soils or aquifers. The stable nitrogen isotopic composition of 

atmospherically deposited nitrogen is highly variable and can be influenced for example by fossil fuel 

composition or agricultural activities (Kendall 1998, Mayer et al. 2001, Mayer et al. 2002). Synthetic 

fertilizers and nitrate in natural soils are isotopically distinct from N in the atmosphere and δ15N-NO3
-

and δ18O-NO3
-vary between 0 to 3 and 22±3‰ and -3 to 5 and 0 to 14‰, respectively (Kendall 1998). 

Therefore the isotopic composition of nitrate is a powerful tool to determine both nitrogen 

transformation processes and its origin (see chapter 3 for details). 
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1.5 The Baltic Sea and its sensitivity towards eutrophication  

The Baltic Sea is one of the most eutrophied coastal seas in the world (Cloern 2001) and 

anthropogenic eutrophication effects are well studied (Elmgren 2001). Every year about 1000 kt of 

nitrogen are entering the Baltic Sea from various sources like rivers, N2 fixation, atmospheric 

deposition and point sources (Tab. 1.2). In chapter 2 detailed background informations on the Baltic 

Sea are given. Therefore, only a brief summary in this section about the Baltic Sea is given to 

highlight why it is an excellent site for studying nitrogen transformation processes in face of 

eutrophication. 

 

Table 1.2: Nitrogen inputs to the Baltic Sea 

Input pathway 
Baltic Sea N input 

[kt N yr-1] in 2000 
Reference 

Riverine 745 Helcom 2005 

Atmospheric 264 Helcom 2005 

N2 fixation 180 to 430 Rolff et al. 2008, Wasmund et al. 2005 

 

The Baltic Sea is a shallow, intra-continental, brackish sea and covers an area of 377.000 km² with a 

coastline of 8000 km (Sweitzer et al. 1996). Its topography is characterized by a series of basins (e.g. 

Arkona, Bornholm and Gotland Basins). A positive water balance creates a strong salinity gradient 

from 2 in the northernmost Gulf of Bothnia to over 20 in the Kattegat and Danish Straits and a 

permanent halocline separates the deep, saltier water from the surface water in the western and 

central Baltic Sea. The bottom water of the Baltic proper is only replaced by intermittent inflows of 

denser, oxygenated water through the Danish Straits from the North Sea. Additionally due to the 

limited water exchange with the North Sea and long residence times of approximately 30 years, 

stagnation periods of up to 16 years enhance the natural occurrence of anoxic bottom waters 

(Elmgren 2001, Conley et al. 2002). Anthropogenic driven eutrophication has increased both the 

spatial extent and intensity of hypoxia in the deep basins of the Baltic Sea (Conley et al. 2009, Zillen 

et al. 2008). Recently a study could show that over 115 coastal sites in the Baltic Sea experienced 

hypoxia, which implies that over 20% of all worldwide known hypoxic sites are in the coastal zone of 

the Baltic Sea (Conley et al. 2011). The consequences of hypoxia on the biota are mentioned in 

section 1.1 but also the consequences on the nutrient biogeochemical cycles of the Baltic Sea are 

substantial leading to increased phosphorus release from the sediments (Mort et al. 2010) and 

internal loading and circulation of nutrients are intensified. Additionally, eutrophication has led to an 



Introduction 

12 
 

increase in the abundance of cyanobacteria and other phytoplankton blooms in the Baltic Sea (Finni 

et al. 2001, HELCOM 2005, Vahtera et al. 2007).  

Another characteristic of the Baltic Sea is that the drainage basin of the Baltic Sea is four times larger 

than the sea itself and is populated by 85 million people (Sweitzer et al. 1996). The population is 

heterogeneously distributed with a gradient from high population density in the south (>500 

inhabitants/km2) to low population density in the northern part (< 10 inhabitants/km2) (Lääne et al. 

2005). In the north the land cover is dominated by boreal forests whereas the southern catchment is 

heavily cultivated. This results in higher riverine inputs of nutrients from the southern part of the 

catchment (HELCOM 2004, HELCOM 2009, Humborg et al. 2007, Voss et al. 2011). For the Baltic Sea 

rivers play a crucial role in the total input of nitrogen, accounting for approximately 75% of the total 

nitrogen input to the Baltic Sea (HELCOM 2005, Rolff et al. 2008, Table 2). The rivers Neva, Vistula, 

Daugava, Nemunas and Oder supply over 50% of the total nitrogen influx mainly in form of dissolved 

inorganic nitrogen (DIN) (HELCOM 2004). It is well known that concentrations decrease rapidly 

offshore in the Baltic Sea but the nitrogen removal processes which lead to the loss of nitrate are still 

not fully characterized in the estuaries and adjacent coastal areas (see chapter 2 and 3 for details).  

To solve the ecological problems of the Baltic Sea, in 1974 seven Baltic coastal states formed the 

Helsinki Commission (HELCOM). In 2007 the Helsinki Commission (now nine Baltic coastal states) 

adopted the Baltic Sea Action Plan (BSAP). In the BSAP clear nutrient reduction goals have been 

allocated to the riparian countries and the main goal is that the Baltic Sea is supposed to be 

unaffected by eutrophication by 2021. The same is claimed in the European Water Framework 

Directive (WFD 2000), which implements that in surface waters like coastal water bodies, including 

the Baltic Sea, good ecological and chemical conditions are to be reestablished. Although recent data 

indicate a decrease in nitrogen runoff (Wulff et al. 2009), eutrophication remains the single greatest 

threat to the Baltic Sea environment (HELCOM 2009, Andersen et al. 2011). In a recent study the 

HELOCM still claims 176 areas out of 189 to be affected by eutrophication (Andersen et al. 2011). 

It has been shown that denitrification as the main process that removes nitrogen permanently from 

the system is estimated to account for 48-73% of external nitrogen removal (Deutsch et al. 2010). 

Additionally, Hietanan et al. 2008 could show that anammox can contribute 10 to 15% to the total N2 

production in the Baltic Sea. But still the nitrogen budget in the Baltic Sea is not balanced. 

Additionally, two recent studies suggest that the removal capacity may even decrease when DNRA 

becomes the most important pathway under hypoxia (Jäntti et al. 2011, Jäntti et al. in press). 

Therefore studying nitrogen turnover and removal processes in the Baltic Sea is from great 

importance to make sure that the nitrogen removal capacities are not lost, besides the effort to 

reduce nitrogen loads. 

 



Introduction 

13 
 

1.6 Aim of the study 

This thesis is part of the international BONUS (Baltic Organization Network for Funding Science) 

project AMBER (Assessment and Modelling of Baltic Ecosystem Response), which focuses on the 

implementation and application of an Ecosystem Approach to Management (EAM) to the Baltic Sea 

in face of eutrophication and climate change focusing on the coastal ecosystem. The aim of the 

present study is to characterize nitrogen turnover processes in the Baltic Sea and to contribute to the 

existing knowledge on the role of nitrogen in coastal areas. The study is based on the one hand on in 

situ rate measurements in artificial labeling experiments and on the other hand on the analyses of 

natural stable nitrogen, oxygen and/or carbon isotopes in different pelagic compounds like nitrate or 

particulate organic matter (POM).  

In chapter 2 the existing knowledge on the historical progression of eutrophication based on long 

term data sets is summarized. Additionally, the sensitivity of the Baltic Sea towards eutrophication 

and future scenarios from climate related change in the Baltic Sea region are examined. Regional 

differences that lead to major open questions concerning the nitrogen cycle in the Baltic Sea are 

elucidated. The goals of chapter 3 are to trace the isotopic signature of riverine nitrate in the coastal 

zone of the Baltic Sea and to determine main nitrate removal processes. Thus nitrate from different 

sources, including the Oder River in the south, the Nemunas River in the north east and the central 

Baltic Sea are analyzed by means of dual isotope analysis. Additionally, 15N nitrate tracer techniques 

were used to quantify the nitrate uptake by in situ measurements. Also the influence of permeable 

sediments on the N-cycling in the overlying bottom water is studied. This part is based on data from 

a spring cruise in 2009, when nitrate loads and river runoff reach their annual high. In chapter 4 and 

5 the fate of organic matter (DON and DOC) is characterized by means of 15N and 13C tracer 

techniques along a salinity gradient ranging from 34 to 2. Turnover rate calculations and end-

member-mixing-models were used to show the high dynamics of the bulk DOM pool. These studies 

were performed during summer to account the fact that DON can be a nutrient source, when 

inorganic nitrogen is limited. Chapters 2 to 5 are presented in a manuscript-like structure and a 

detailed statement on my contributions to the manuscripts are given at the end of the thesis. In 

chapter 6 the results of this thesis are summarized and a short outlook is presented. 
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2. History and scenarios of future development of Baltic Sea eutrophication 

 

M. Voss, J. Dippner, C. Humborg, F. Korth, T. Neumann, J. Hürdler, G. Schernewski, M. Venohr 

 

Estuarine, Coastal and Shelf Science, 92(3), pp. 307-322 

 

2.1a Abstract 

Nutrient loads from watersheds, atmospheric deposition, and cyanobacterial nitrogen fixation have 

led to eutrophication in the Baltic Sea. Here we give the historical evolution of this, detail some of 

the specific eutrophication features of the Baltic Sea, and examine future scenarios from climate 

related changes in the Baltic Sea region. We distinguish northern and southern regions of the Baltic 

Sea. The northern watersheds have sub-polar climate, are covered by boreal forest and wetlands, are 

sparsely populated, and the rivers drain into the Gulf of Bothnia. The southern watersheds have a 

marine influenced temperate climate, are more densely populated and are industrially highly 

developed. The southern areas are drained by several large rivers, including the representative Oder 

River. We compare these regions to better understand the present and future changes in Baltic Sea 

eutrophication. 

Comparing the future projections for the two regions, we suggest that in addition to changes in 

nutrient inputs, increased temperature and precipitation are likely to become important forcings. 

Rising temperature may increase release of dissolved organic matter (DOM) from soils and may alter 

the vegetation cover which may in turn lead to changed nutrient and organic matter input to the 

Baltic Sea. For the southern Oder River catchment a model study of nutrient input is evaluated, 

MONERIS (Modelling Nutrient Emissions in River Systems). The strong correlation between 

precipitation, flow and nutrient discharge indicates a likely increase in nutrient concentrations from 

diffuse sources in future. The nutrients from the Oder River are modified in a lagoon, where removal 

processes change the stoichiometry, but have only minor effects on the productivity. We suggest 

that the lagoon and other nearshore areas fulfil important ecological services, especially the removal 

of large quantities of riverine nitrogen but at the same time are threatened systems due to increasing 

coastal hypoxia. 
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3. Nitrogen turnover during spring outflow from the nitrate-rich Curonian and Szczecin lagoon 

using dual isotopes in nitrate 

 

F. Korth, I. Liskow, B. Fry and M. Voss 

 

Submitted to Marine Chemistry 

 

3.1 Abstract 

Coastal zones which receive high nitrogen loads from rivers often suffer substantially from 

eutrophication. This is true for the Baltic Sea, which is well-known for its critical eutrophication status 

especially along the coastlines. Although the nutrient concentrations decrease rapidly offshore, the 

uptake and turnover processes near-shore are not well understood. The Rivers Oder and Nemunas, 

the second and third largest nitrogen contributors, drain into the Szczecin and Curonian lagoon, 

respectively, before they enter the coastal area of the Baltic Sea. During peak outflow, in March 2009 

nutrient concentrations, nitrate uptake rates and dual isotopes (δ15N-NO3
- and δ18O-NO3

-) in nitrate 

were measured in the outflows of the lagoons to characterize nitrate turnover processes and its fate 

in the coastal zone. In the Curonian lagoon outflow the isotopic signature is dominated by mixing, 

whereas in the Szczecin lagoon outflow the isotope values are influenced by the ongoing spring 

phytoplankton bloom. Nitrate assimilation is indicated in the surface waters of the Szczecin lagoon 

outflow by a parallel enrichment of 15N and 18O. In the near bottom waters denitrification seems to 

be the prevalent process which generates the isotopic signal of nitrate. There a deviation from the 

1:1 δ18O-NO3
- to δ15N-NO3

- relationship usually associated with denitrification was found. This 1.3:1 

ratio suggests that denitrification is not only fueled by nitrate fluxes from the water column into the 

sediments, but also from nitrate derived from remineralization of particulate matter and coupled 

nitrification/denitrification. Moreover, the fractionation factors of 15ε of 9.9‰ and 18ε of 10.1‰ in 

near bottom waters infer that the isotopic enrichment from sedimentary denitrification may be 

higher in sandy sediment than in muddy sediments. 
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4. Uptake of dissolved organic nitrogen by size-fractionated plankton along a salinity gradient from 

the North Sea to the Baltic Sea 

 

F. Korth, B. Deutsch, I. Liskow, M.Voss 

 

Biogeochemistry (DOI 10.1007/s10533-011-9656-1) 

 

4.1 Abstract 

The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient 

input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved 

organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self 

produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and 

autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity 

gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON 

sources were exploited by the size fractions 0.2-1.6 µm (bacteria size fraction) and >1.6 µm 

(phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to 

the North Sea, with rates of up to 1213 nmol N L-1 h-1. The autochthonous DON was the dominant 

nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size 

fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 µm plankton 

dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2-1.6 µm dominated DON 

uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and 

uptake. These findings indicate that DON is an important component of plankton nutrition and can 

fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic 

Sea especially when inorganic nitrogen sources are depleted. 
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5. Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea 

Ecosystem   

 

B. Deutsch, A. Alling., C. Humborg, F. Korth, C. M. Mörth 

 

Biogeosciences, 9, 4465-4475, 2012 

doi:10.5194/bg-9-4465-2012 

 

5.1 Abstract 

To test the hypothesis whether high molecular weight dissolved organic matter (HMW-DOM) in a 

high latitude marginal sea is dominated by terrestrial derived matter, 10 stations were sampled along 

the salinity gradient of the central and northern Baltic Sea and were analyzed for concentrations of 

dissolved organic carbon as well as δ13C values of HMW-DOM. Different end-member-mixing models 

were applied to quantify the influence of terrestrial DOM and to test for conservative versus non-

conservative behavior of the terrestrial DOM in the different Baltic Sea basins. The share of 

terrestrial DOM to the total HMW-DOM was calculated for each station, ranging from 43 to 83%. This 

shows the high influence of terrestrial DOM inputs for the Baltic Sea ecosystem. The data also 

suggest that terrestrial DOM reaching the open Baltic Sea is not subject to substantial removal 

anymore. However compared to riverine DOM concentrations, our results indicate that substantial 

amounts of HMW-DOM (> 50%) seem to be removed near the coastline during estuarine mixing. A 

budget approach yielded residence times for terrestrial DOM of 2.8, 3.0, and 4.5 yr for the Bothnian 

Bay, the Bothnian Sea and the Baltic Proper. 
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6. Conclusions and Perspectives 

Currently over 40% of the world’s population live within 100 kilometers of the coast and since the 

onset of industrialization the word population has grown to 7 billion people (The state of world 

population 2011) and will continue to increase. The UK Food and Agriculture Association estimates 

that the world population will increase to 8.9 billion, by 2050 meaning that global agriculture must 

increase even further in the next 30 years to sustain this type of population growth. As population 

density and economic activity in the coastal zone increases, pressures on coastal ecosystems will 

increase. Also changes in diet are of great importance. Eriksson Hägg et al. 2010 hypothesized that 

increased protein consumption in the eastern European countries could lead to 16 to 32% increased 

total nitrogen fluxes to the Baltic Sea making it even more difficult to reduce the nitrogen load by 

135000 tons and phosphorous loads by 15250 tons as required by the Baltic Sea Action Plan (BSAP) 

for the year 2021. Also Krämer et al. (2011) estimated that agricultural nitrogen loads to the Oder 

Lagoon could increase by as much as 23% in the future considering aspects like cultivation of energy 

maize and increased animal stocks. Therefore, current and expected future human alterations to the 

nitrogen cycle make it necessary to understand how nitrogen is cycling through watersheds to assess 

the consequences of increasing anthropogenic nitrogen inputs.  

In the framework of this thesis, the fate of dissolved organic and dissolved inorganic nitrogen were 

studied in detail in the Baltic Sea. The results indicate that not only inorganic but also organic 

nitrogen serves as an important nutrient source for phyto- and bacterioplankton and that it is mainly 

degraded in estuaries and near the coastline. In general, continental shelf ecosystems, such as the 

Baltic Sea, are characterized by strong gradients in nutrients and organic matter, which are mainly 

maintained by the continuous supply through river runoff. These gradients imply an intensive 

nutrient and organic matter cycling within the coastal areas, which contribute a major part to the 

annual nitrogen demand (e.g. Costanza et al. 1997, Middelburg and Nieuwenhuize 2001, Seitzinger et 

al. 2006). In the Baltic Sea pronounced regional differences are found according to the land use and 

population density. In the northern watersheds, which are covered by boreal forests and are sparsely 

populated, nitrogen discharges from the rivers are lower than in the southern region, where 

watersheds are densely populated and agriculture and industry are highly developed (Fig.6.1). 

Additionally, the total nitrogen (TN) composition varies (Stepanauskas et al. 2002). In the northern 

part organic nitrogen dominates, whereas in the southern part nitrate is the main component of the 

total nitrogen pool. Moreover, DON from anthropogenic sources is more bioavailable than DON 

exported from natural regions like forests or wetlands (Seitzinger et al. 2002). Congruently, results of 

this thesis indicate that the potential of plankton to utilize DON is higher in the southern part of the 

Baltic Sea, where anthropogenic loads are high and nitrogen limitation occurs (Graneli et al. 1990).  
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Pronounced differences were found between the North Sea and the Baltic Sea regarding the 

magnitude of DON uptake rates. In the Baltic Sea, where riverine DON loads are high, DON uptake 

rates were an order of magnitude higher than in the North Sea. This is the first study were bulk 

dissolved organic nitrogen (DON) uptake rates were determined by imitating a natural DON source 

with 15N labeled DON instead of using single DON compounds such as urea or amino acids. 

Stepanauskas et al. 2002 showed that around 30% of terrestrial derived DON was available to 

bacteria during bioassay experiments in the Baltic Sea. This thesis adds to the knowledge that 

besides bacteria also phytoplankton utilizes DON (either directly or following photodegratation or 

bacterial breakdown). 

 

Figure 6.1: The Baltic Sea and its catchment area, which is colored according to the land use. Concentrations of total 

nitrogen (TN) (µmol l-1) are given for 35 rivers and the percentage of dissolved inorganic nitrogen (DIN), dissolved organic 

nitrogen (DON), and particulate nitrogen (PN) (sources Baltic Nest institute and Stepanauskas et al. 2002). 
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However, riverine loads are the most important allochthonous DON sources. From results of this 

thesis it was calculated that the share of terrestrial DOM to the total DOM pool in the Baltic Sea is 

high, ranging from 43 to 83%. Turnover rate calculations showed that terrestrial derived DON must 

be mainly degraded in near proximity of the coast and that only more refractory compounds remain. 

Additionally, in this thesis it was demonstrated that also DOC is an important energy source which is 

also mainly degraded in river estuaries and in the coastal area. The fate of carbon and nitrogen in 

organic matter can be coupled or decoupled (Veuger and Middelburg 2007, Engel et al. 2002, Bode et 

al. 2004). Especially under nitrogen limitation the utilization of DON seems to become important. 

Therefore future studies should trace both DON and DOC to investigate carbon-nitrogen couplings or 

decoupling. In order to quantify the loss of DON/DOC in the coastal zone, future studies should 

include measurements of bulk DON/DOC uptake rates along a DOM concentration gradient from the 

river to the open sea. Since the composition and reactivity of DON depend on its source and DON of 

different rivers is chemically distinct (McCallister et al. 2006) studies on the fate of DON should be 

performed in different river systems and over longer time periods, because the reactivity of DON can 

also vary over the season and even during peak outflow events (Stepanauskas et al. 2000, Wiegner et 

al. 2009, Bode et al. 2004).  

In some regions already today dissolved inorganic nitrogen reductions can be observed due to 

improved fertilizer, livestock management and/or advanced wastewater treatment (Carstensen et al. 

2006), but the productivity has not decreased, which is often attributed to internal nutrient loadings 

and recycling (Soetaert et al. 2006, Philippart et al. 2007). In the Oder River, one of the most 

eutrophied rivers of the Baltic Sea, a slight decrease in total nitrogen loads has been observed 

(Savschuk and Wulff 2009) due to inorganic nitrogen reductions, however around 32% of the 

nitrogen load is in form of DON and no reduction in DON can be seen. Since this thesis has shown 

that DON can be an important source for primary production it becomes even more necessary to 

focus as well on DON dynamics besides DIN and to have a closer look on DON sources and sinks. To 

evaluate its potential importance in ecosystem-wide nutrient budgets DON should be included as an 

extra nutrient sources in physical-biogeochemical models. Additionally, as suggested in chapter 2 

climate change may lead to massive release of DOC and DON in boreal and arctic rivers since 

permafrost areas will start to thaw. If this additional DON and DOC will affect the productivity in 

coastal seas, is not clear yet (Hood and Scott 2008).  

Further on, results from this thesis have shown that during cyanobacteria blooms DON release and 

uptake are closely coupled. Especially under the aspect that the frequency and magnitude of 

cyanobacteria blooms have increased in the Baltic Sea (Finni et al. 2000, Vahtera et al. 2007) and that 

climate change is a potential catalyst for the expansion of these blooms (Pearl and Huisman 2008, 

Meier et al. 2011) it becomes obvious that the understanding of DON dynamics is important to 
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understand how this pool will respond to anthropogenic perturbations and climate change. However, 

still numerous questions remain concerning dissolved organic substances and its role in the nitrogen 

cycle. Therefore further studies with 15N tracer techniques, for example by combining nitrogen 

concentration and stable isotope ratio measurements of DON with the “denitrifier method” are 

envisioned which can give more insights into processes (Schlarbaum et al. 2010, Knapp et al. 2005, 

2011). With the combination of these methods it already have been shown in the North Atlantic and 

the North Pacific Ocean, as well as in coastal areas like the North Sea, that DON is actively 

participating in the nitrogen cycle of each region (Schlarbaum et al. 2010, Knapp et al. 2011).  

 

Like organic substances also inorganic nutrients are known to decrease rapidly offshore specifically in 

the southern Baltic Sea, where the anthropogenic nitrogen isotopic signature is rapidly replaced by 

the one of nitrogen fixing organisms (Voss et al. 2000, 2005, 2006, HELCOM 2007). However the 

processes which influence the isotope values in the transition zone of riverine and marine water 

remained unclear. Therefore measurements of dual isotopes in nitrate were performed for the first 

time in the outflows of the Nemunas and Oder Rivers, two of the main nitrogen contributing rivers to 

the Baltic Sea, during peak outflow season, when nitrate loads are highest. Results indicate mixing in 

the surface water and nitrate assimilation, whereas in permeable sediments, as they are found in the 

Oder outflow, nitrate is denitrified directly or removed via coupled nitrification/denitrification. So far, 

permeable sediments were mainly thought to contribute little to the biogeochemical cycling due to 

its low carbon content thus biogeochemical research has focused on muddy shelf sediments. This 

study adds to the growing knowledge that permeable sediments can be important sites for nitrogen 

removal (Jahnke et al. 2005, Janssen et al. 2005). A recently published study by Gao et al. (2012) 

demonstrated for the North Sea that permeable, sandy sediments, which account for 58-70% of the 

continental shelf area (Emery 1968), are important nitrogen sinks. They estimated an annual nitrogen 

removal rate of 745±109 mmol N m-2 yr-1 for these sediments. Future studies should consider the 

potential of permeable sediments to regulate the flow of nitrogen at the land–sea boundary in 

estuaries where nitrate and fresh organic matter loads are high. Consequentley the contribution of 

permeable sediments to the global nitrogen loss budget need to be reevaluated.  

So far denitrification rate measurements in permeable sediments in the Baltic Sea are rare (Deutsch 

et al. 2010), and have not been performed in the estuaries of the Oder and/or Nemunas River. Future 

studies should focus on the determination of denitrification rates in these permeable sediments to 

estimate the amount of nitrate lost in the estuaries and the adjacent coastal zone. Rate 

measurements should be performed seasonally to determine which major factors are controlling 

denitrification rates, since the interaction of parameters like substrate availability, temperature, 

and/or oxygen concentration is still under debate (Seitzinger 1988). Concerning denitrification rate 
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measurements the sample resolution in space and time is relatively low as collecting and incubation 

by using the isotope pairing technique is time consuming (Nielsen 1992, Risgaard-Petersen et al. 

2003). Furthermore, model studies claim that more research is needed on benthic denitrification, 

since not well understood biogeochemical processes increase the uncertainties of future projections 

(Meier et al. 2011). Therefore another promising approach would be the use of a needle probe MIMS 

inlet to measure large sets of N2/Ar profiles (Hilary and Seitzinger 2003) followed by modeling N2 

production rates.  

Both rivers, the Nemunas and the Oder, drain into lagoons before entering the Baltic Sea. 

Transformation processes within these lagoons have not been a main focus of this thesis but a recent 

study showed that the Szczecin lagoon act as an important nitrogen sink (Voss et al. 2010). However 

under hypoxia, which is increasing in the coastal zone of the Baltic Sea (Conley et al. 2011), nitrogen 

removal rates decrease with reactive ammonium accumulating through the process of dissimilatory 

reduction to ammonium (DNRA) (Jäntti et al. in press). Denitrification measurements performed 

during this thesis in muddy sediments of the Szczecin lagoon are the highest denitrification rates so 

far measured in the Baltic Sea and ranged from 5000 to 7500 µmol N m-2 d-1 in summer (data not 

published). Simple budget calculations with the measured denitrification rates show that only 16 to 

24% of the DIN load (46 kt DIN yr-1, mainly in form of nitrate (Voss et al. 2010)) entering the lagoon 

from the Oder river is removed via denitrification. Therefore, still large amounts of nitrogen enter the 

adjacent coastal zone and these loads may even increase. Since the fate of nitrogen from rivers to 

the open Baltic Sea still is under debate, results from this thesis provide a valuable basis for future 

research to further study nitrogen transformation processes in estuaries and adjacent coastal areas 

to better understand how climate change and increasing direct anthropogenic pressures will 

influence the Baltic Sea. Projections of combined effects of climate change and eutrophication in 

general lead to the conclusion that if nothing is changed oxygen deficiencies and phytoplankton 

concentrations will continue to increase in the Baltic Sea (Meier et al. 2011). Combating 

eutrophication remains one of the major challenges in the Baltic Sea and worldwide. 
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